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Abstract An attempt is made to determine the relationship between the full
Schrödinger Coulomb Hamiltonian and the clamped nuclei form that is usually the
basis of electronic structure calculations, without treating identical nuclei as distinguis-
hable. It is concluded that it is not at present possible to establish such a relationship
in a mathematically secure way.
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1 Introduction

The Coulomb Hamiltonian for a system of N electrons and A atomic nuclei may be
written as
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where the individual terms have obvious classical interpretations; the charges and
masses of the electrons and nuclei are regarded as parameters to be taken from expe-
rimental data. N and A are undetermined positive integers.1

In 1951 Kato [2] established that the Coulomb Hamiltonian, H, is essentially
self-adjoint.2 This property, which is stronger than Hermiticity, guarantees that the
time evolution

�(t) = exp(−iHt/h̄)�(0)

of a Schrödinger wavefunction is unitary, and so conserves probability. This is not
true for operators that are Hermitian but not self-adjoint. It is easy enough to con-
struct examples of such operators; an example given by Thirring [3] is of the radial
momentum operator −i h̄∂/∂r acting on functions φ(r), φ(0) = 0 with 0 ≤ r < ∞.

2 What Kato did?

The first thing that Kato did was to separate out the centre-of-mass motion from the
problem. All that is needed to remove the centre of mass motion from the full molecule
Hamiltonian is a linear point transformation symbolised by

(t ξ) = x V (2)

In (2) t is a 3 by NT − 1 matrix (NT = N + A) and ξ is a 3 by 1 matrix, so that
the combined (bracketed) matrix on the left of (2) is 3 by NT . V is an NT by NT

matrix which, from the structure of the left side of (2), has a special last column whose
elements are

Vi NT = M−1
T mi , MT =

NT∑

i=1

mi (3)

Hence ξ is the standard centre-of-mass coordinate

ξ = M−1
T

NT∑

i=1

mi xi (4)

As the coordinates t j , j = 1, 2, . . . , NT − 1 are to be translationally invariant,

NT∑

i=1

Vi j = 0, j = 1, 2, . . . , NT − 1 (5)

1 This Hamiltonian results from the standard canonical quantization of electrodynamics if it is assumed par-
ticle speeds are negligible compared to the speed of light, and all charge–photon interactions are discarded;
the Coulomb gauge condition must also be imposed [1].
2 The work was completed in 1944 and was actually received by the journal in October 1948.
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on each remaining column of V and it is easy to see that (5) forces t j → t j as
xi → xi + a, all i .

The ti are independent if the inverse transformation

x = (t ξ)V−1 (6)

exists. The structure of the right side of (6) shows that the bottom row of V−1 is special
and, without loss of generality, its elements may be required to be

(V−1)NT i = 1 i = 1, 2, . . . , NT (7)

The inverse requirement on the remainder of V−1 implies that

NT∑

i=1

(V−1) j i mi = 0 j = 1, 2, . . . , NT − 1 (8)

The Hamiltonian (1) in the new coordinates becomes

H(t, ξ) = − h̄2

2
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Here the positive constants 1/µi j are given by

1/µi j =
NT∑

k=1

m−1
k Vki Vk j , i, j = 1, 2, . . . , NT − 1 (10)

The operator ri j is the interparticle distance operator expressed as a function of ti . Thus

ri j (t) =
⎛

⎝
∑

α

(NT −1∑

k=1

((V−1)k j − (V−1)ki )tαk

)2⎞

⎠
1/2

(11)

In (9) the �∇(ti ) are grad operators expressed in the cartesian components of ti and
the last term represents the centre-of-mass kinetic energy. Since the centre-of-mass
variable does not enter the potential energy term, the centre-of-mass motion may be
separated off completely so that the eigenfunctions of H are of the form

T (ξ)�(t) (12)
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where �(t) is a wavefunction for the Hamiltonian H′(t), Eq. 9, which will be referred
to as the translationally invariant Hamiltonian. It should be emphasised that diffe-
rent choices of V are unitarily equivalent so that the spectrum of the translationally
invariant Hamiltonian is independent of the particular form chosen for V, provided
that it is consistent with (3) and (5). In particular it is perfectly possible to put the
kinetic energy operator into diagonal form by choosing an orthogonal matrix U that
diagonalises the positive definite symmetric matrix of dimension NT −1 formed from
the 1/µi j and then replacing elements of the originally chosen V according to

Vi j →
NT −1∑

k=1

VikUkj , j = 1, 2, . . . , NT −1

As can be seen from (11), the practical problem with any choice of V is the complicated
form given to the potential operator.

Kato considers just the translationally invariant part of the problem and he actually
uses a coordinate system in which the kinetic energy can be written in the form

h̄2

2

NT −1∑

i1

1

µi i
∇2(ri ) + h̄2

2µ0

∣∣∣∣∣

NT −1∑

i=1

| �∇(ri )|
∣∣∣∣∣

2

where t is replaced by r to agree with Kato in describing the coordinates. Each
individual ri is thought of as being composed of three cartesian coordinates (xi , yi , zi )

with ri =
√

(x2
i + y2

i + z2
i )

He points out that if µ0 increases without limit then something in the form of the
original Hamiltonian is obtained but for one “particle” less, so that there is no loss of
generality in choosing this form. But the finding is general.

He specifies the potential energy as expressible in the form

V(r) = V′(r) +
NT −1∑

i=1

V0i (r) +
NT −1∑

i, j

Vi j (|ri − r j |) (13)

For a mathematician the specification of differential operator thus far leaves the
problem vague and as Kato says, “we cannot expect such an obscure operator to be
self-adjoint in the literal sense.” To remove this vagueness one must specify the domain
of the operator, that is say what sort of functions it is supposed to operate on and one
must specify the behaviour of the potential.

So what Kato does is to say

• H must be a symmetric (Hermitian) operator
• H can be applied on all functions of the form

g(r) = P(r) exp

(
−

(NT −1∑

i=1

r2
i

)
/2

)
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where P is a polynomial.

Notice, this does not mean to say that it can be applied ONLY to such a sort of
functions but that it must produce meaningful results when applied to such functions.
This choice is made because Kato is going to work in momentum space and this class
of functions have nice Fourier transforms. Any such function belongs to a Hilbert
space H denoted L2 of square integrable functions. Thus for the whole operator to
make any sense the product function Vg must belong to the same Hilbert space.

To ensure this Kato requires that for two real constants C and R

•

|V(r)| ≤ C

•
∫

r≤R
|Vij(r)|2dxdydz ≤ C2

•

|Vi j (r)| ≤ C(r > R)

These are pretty mild requirements and are satisfied by all inverse power potentials
of the form r−m provided that m is positive and less than 3/2. It does NOT hold for
potentials like r−2 and this is what makes relativistic calculations so tricky to be sure
about.

It is not necessary to specify the domain of H′ more closely than this because these
conditions on the functions and the potential enable Kato to show that the operator
defined on the restricted domain has a unique self-adjoint extension and that this
extension is the operator that we know and love!

It was pretty obvious to applied mathematicians, that the kinetic energy operator
alone is indeed self-adjoint because of their classical mechanical experience. It was
shown by Stone in the 1930s that multiplicative operators of the kind specified above
are also self-adjoint but it was entirely un-obvious that the sum of the operators would
be self-adjoint because the sum of the operators is defined only on the intersection of
their domains.

What Kato showed in Lemma 4 of his amazing paper was that for a potential so
specified and for any function f in the domain D0 of the full kinetic energy operator
T0, the domain of full problem DV contains D0 and there are two constants a, b such
that

||V f || ≤ a||T0 f || + b|| f ||

and that a can be taken as small is liked. This result is often summarised by saying
that the Coulomb potential is small compared to the kinetic energy.

Given this result he proved in Lemma 5 that the usual operator is indeed, for all
practical purposes, self-adjoint and is bounded from below.
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Why worry about this? Well if the operator is not self-adjoint then it could support
solutions interpretable as a particle falling into a singularity or getting to infinity in a
finite time and these are unacceptable as physical solutions. Curiously enough these
are possible solutions in the classical mechanics of three bodies. Thus one can expect
that un-physical solutions will not arise from solving the problem specified by the
Coulomb Hamiltonian.

It thus makes sense to suppose that one can get all that one wants by considering
eigen-solutions of the problem (to return to our notation) of the form

H′(t)�(t) = E�(t) (14)

One does know at this stage that the eigenvalue E lies on the real line but one does not
know if it is isolated point or part of a continuum. One does not know either whether
� lies in the Hilbert space L2 or not.

By extending some work of Friedrichs from the 1930s Kato showed that � has
continuous derivatives of the second order in a region S of configuration space where
V(r) is sufficiently regular and where the potential satisfies the (classical) wave equa-
tion. For the case of the Coulomb potential this means that problems arise only at
singular points of the potential where the derivatives result in delta functions. Later
work by Kato [4] established the cusp conditions on the behaviour of Coulomb wave
functions in many of the singular cases.

The spectral properties of the Coulomb Hamiltonian have been established in the
years since the initial work of Kato, and so what is said here is not at all new but it
is perhaps not yet well represented in the theoretical chemistry literature and a brief
summary of the fundamental results and reference to some books may be helpful.
Chapter XIII of the book The Analysis of Operators by Reed and Simon [5] contains
proofs of many of the required results but in it, some necessary results arising from
the spectral theory of self-adjoint operators are simply quoted; details may be found
in earlier volumes by the same authors, particularly in Sect. VII of [6] and Sect. X of
[7]. An alternative source of similarly relevant material is the book by Thirring [8],
who also provides a useful summary, expressed in accessible language and without
too much detail, in his contribution to the Schrödinger centenary volume [3].

There are various ways in which the spectrum σ(A) of a self-adjoint operator A may
be classified. The classification most useful in molecular physics is into discrete and
essential parts. The discrete spectrumσd(A) is the subset of the pure point spectrum that
consists of isolated eigenvalues of finite multiplicity. The essential spectrum σess(A)

is the complement of the discrete spectrum.

σess(A) = σ(A)\σ d(A) (15)

The discrete spectrum and the essential spectrum are, by definition, disjoint; however,
although the essential spectrum is always closed, the discrete spectrum need not be. The
essential spectrum of the Coulomb Hamiltonian consists of the absolutely continuous
spectrum and may contain a portion of the pure point spectrum. This operator has no
singular continuous spectrum. The essential spectrum describes scattering states of
the system while the discrete spectrum describes bound states.
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The spectrum of H′ may (but need not) have a discrete part, and the start of the
essential part is established by means of so-called HVZ theorem (Theorem XIII.17
in [5]) which demonstrates that the essential spectrum can be written as σess(H′) =
[�,∞) where � is the energy of the lowest two-body cluster decomposition of the
NT -particle system. A valuable discussion of the HVZ theorem from a geometrical
point of view can be found in [9].

Even without recourse to detailed mathematics, it is clear that the essential spectrum
of the hydrogen atom begins at zero energy. It is absolutely continuous and does not
contain any pure point members; it describes the scattering states of a single electron
and a nucleus. For all other atoms the first ionization energy is such that the essential
spectrum begins at somewhat below zero energy. It contains states describing the
scattering of an electron from a singly ionized atom, two electrons from a doubly
ionized atom and so on. These states occur at energies below zero. This part of the
spectrum is often said to describe the bound states in the continuum but is perhaps more
accurately designated as describing resonances. At energies above zero, the spectrum
is absolutely continuous and describes the scattering of the electrons by the nucleus.
This sort of description can be generalised to the formal Hamiltonian appropriate to
any molecular formula.

However the extent of the discrete spectrum is by no means obvious and for a
Coulomb Hamiltonian describing a given collection of electrons and nuclei the diffi-
cult technical problem is to find out if there is any discrete spectrum at all before the
start of the essential spectrum. This requires the demonstration of a so-called ‘binding
condition’, first obtained by Zhislin [10]. For a collection of N electrons and A fixed
nuclei with total (positive) charge Ze, the bottom of the spectrum of H′ is a genu-
ine N -particle bound state that satisfies the Schrödinger equation with some energy
E0 for each choice of the locations of the nuclei, provided N < Z + 1. The same
result has recently been obtained when account is taken of the ever-present quantized
electromagnetic field [11].

It was also shown by Zhislin [10], and later by Uchiyama [12], that in the single
nucleus case there are an infinite number of bound states if the atom is electrically
positive or neutral. Proofs of this are accessible in Thirring [8] and Simon [13]. If the
system has an overall negative charge then it has at most a finite number of bound
states as, again, was first shown by Zhislin [14]. For example Nyden Hill [15] showed
explicitly that the H− ion had only one bound state. If the system has more than one
nucleus then, as shown in Thirring, with the nuclei treated as clamped, the Hamiltonian
has spectral properties just like those of an atom but the form of the spectrum depends
upon the choice of the nuclear geometry. At one extreme the spectrum will be that of
the united atom and at the other, that of the separated atoms.

There is the following fundamental theorem due to Weyl: if one has a trial wave
function 	 with an expectation value 〈H′〉 which is below the bottom of the essential
spectrum, then H′ has at least one discrete negative eigenvalue. A proof of this result
can be found in [5] where it is shown to follow easily from the linear variation theo-
rem. But it is a rather limited result: to make use of it in any particular system the start
of the essential spectrum must be determined and a trial function found that bounds
this start from below. Both are very difficult to do. At present the most that has been
proved is that the hydrogen molecule has at least one bound state (Richard et al. [16]).
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Ordinary chemical experience makes it seem likely that there are some atomic com-
binations that do not have any bound states but, so far, there are no rigorous results
that enable it to be said that a particular kind of neutral system has no bound states.

It is known that if a system gets either too positive or too negative it does not have
any bound states at all, [17,18]. Simon [19] argued very persuasively that a neutral
system will have an infinite number of bound states only if the position of the bottom
of the essential spectrum is determined by break-up into a pair of oppositely charged
ionic clusters; if the clusters are neutral there will be, at most, only a finite number of
bound states. Subsequently Vugal’ter and Zhislin [20] showed rigorously that Simon’s
conjecture about the spectrum in the case of neutral clusters was well founded, and
Evans et al. [21] were able to show that his belief about the charged clusters was too.

An examination of tables of experimental values of electron affinities and ionisation
energies leads to the conclusion that it is very unlikely that any diatomic molecule has
an infinite number of bound states. This observation is not inconsistent with spec-
troscopic experience. The awkward problem in the moving nuclei case is to know
whether a neutral system has any bound states at all, although, as mentioned above,
the equivalent result in the clamped nuclei case is known.

2.1 The symmetries of the Coulomb Hamiltonian

It should be emphasised that the variables ti or xg , used to designate particles, simply
specify field points, and cannot actually be particle coordinates because of the indistin-
guishability of sets of identical particles. Weyl [22] and later Mackey [23] both stress
that, in the case of sets of identical particles, in addition to supporting the canonical
quantum conditions, the space on which quantum mechanical operators act must be
confined to a sub-space of the full Hilbert space of definite permutational symmetry.
This is a more restricted space than that considered so far but Balslev [24] showed that
all the results stated above on the wider space continue to hold on the restricted space.

The requirement that an operator be totally symmetric means that the effect of an
operator on a function in the sub-space of a particular permutational symmetry must
be to produce another function in the sub-space. To put it slightly differently: it is easy
to see that an operator which is unsymmetric in form could not possibly commute with
the Hamiltonian, which is symmetric, and so could not be simultaneously definite with
the energy of the system.

Thus only operators symmetric in all the coordinates of identical particles can pro-
perly be deployed in the calculation of expectation values that represent observables.
Weyl discusses this in Sect. C 9 of Chapter IV of [22]. He says of the two particle
case:

Physical quantities have only an objective significance if they depend
symmetrically on the two individuals.

and he then goes on to generalise this conclusion to the symmetrical form for the quan-
tities constructed from the variables of N identical particles. He closes his discussion
by looking at the two electron problem. He says that although it might be supposed
that the electrons as a pair of twins could be named ‘Mike’ and ‘Ike’
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it is impossible for either of these individuals to retain his identity so that one
of them will always be able to say “I’m Mike” and the other “I’m Ike”. Even in
principle one cannot demand an alibi of an electron! In this way the Leibnizian
principle of coincidentia indiscernibilium holds in quantum mechanics.

This discussion holds for identical particles of any kind that are to be described by
quantum mechanics and it precludes the specification of, for example, the expected
value of a particular interparticle distance when chosen from a set describing more than
two identical particles. If P represents a permutation of particles in the space defined
by the xi treating the collection of coordinates as a three by NT row matrix, then the
centre-of-mass coordinate is unchanged by such a permutation and the translationally
invariant coordinates ti , treated as a three by NT − 1 row matrix, are transformed by
a matrix H where

(H)i j = (V−1PV)i j , i, j = 1, 2, . . . , NT − 1 (16)

Any permutation of particles with the same mass and charge, identical particles, will
leave the translationally invariant Hamiltonian unchanged. The matrix H however is
not necessarily in standard permutational form nor is it orthogonal, even though it has
determinant ±1 according to the sign of |P|; thus under any permutation of particles,
the translationally invariant coordinates will transform into linear combinations of
themselves. Any chosen transformed coordinate will, generally, involve coordinates
associated with both electrons and nuclei in the original formulation. If it is desi-
red to identify electrons with a particular set of translationally invariant coordinates,
specialised coordinate choices must be made to avoid such mixing.

Because the translationally invariant Hamiltonian is also invariant under all rota-
tions and rotation-reflections of the translationally invariant coordinates, it will have
eigenfunctions which provide a basis for irreducible representations (irreps) of the
orthogonal group in three dimensions O(3). This requirement further restricts the
space but the spectral results given earlier remain valid as again proved by Balslev
[24]. Thus the eigenfunctions are expected to be of two kinds classified by their parity;
each kind consists of eigenfunction sets, each with degeneracy 2J + 1, according to
the irrep J = 0, 1, 2, . . . of SO(3) to which the eigenfunctions belong. The represen-
tations of O(3) are distinct for each parity, and so there is no group theoretical reason
to expect eigenfunctions with different parity to be degenerate.

For molecules, descriptions of rotation-reflection symmetry are usually offered in
terms of three angular coordinates and a parity specification, together with 3NT − 6
internal coordinates, which are invariant under all rotation-reflections. The process
of making these choices is often called fixing or embedding a frame in the body. To
construct the frame fixed in the body it is supposed that the three orientation varia-
bles are specified by means of an orthogonal matrix C, the elements of which are
expressed as functions of three Eulerian angles φm, m = 1, 2, 3 which are orienta-
tion variables. The the matrix C is specified in terms of the translationally invari-
ant coordinates t. Thus the cartesian coordinates t are considered related to a set z
by
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t = Cz (17)

so the matrix C may be thought of as a direction cosine matrix, relating the labo-
ratory frame to the frame fixed in the body. The laboratory frame may always be
chosen as a right handed frame but it is not always the case that there is the free-
dom to choose the frame fixed in the body as a right handed one. Since z are fixed
in the body, not all their 3NT − 3 components are independent, for there must be
three relations between them. Hence components of zi must be writable in terms of
3NT − 6 independent internal coordinates qi , i = 1, 2, . . . , 3NT − 6. Some of the
qi may be components of zi but generally the qi are expressible in terms of scalar
products of the ti (and equally of the zi ) since scalar products are the most general
constructions that are invariant under orthogonal transformations of their constitu-
ent vectors. There are many rather delicate topological problems raised by such a
choice. The space defined is a quotient manifold that is only locally Euclidean and so
internal coordinates can be defined only locally. In fact it always takes more than one
coordinate system to cover the quotient manifold, and this complicates greatly any
explicit account of the rotation-reflection symmetry at the asymptotes. This would
seem to mean that the idea of a global potential surface will not fit easily into this
account.

The eigenfunctions will also provide irreps for the permutation group S of the
system. This group comprises the direct product of the permutation group SN for
the electrons with the permutation groups SAi for each set of identical nuclei i com-
prising Ai members. The physically realisable irreps of this group are restricted by
the requirement that, when spin is properly incorporated into the eigenfunctions, the
eigenfunctions form a basis only for the totally symmetric representation, if bosons
(spin 0, 1, 2, etc.) or of the antisymmetric representation, if fermions (spin 1/2, 3/2,
5/2 etc.). Both of these representations are one-dimensional. In general the relevant
spatial irreps will be many dimensional and so we would expect to have to deal with
degenerate sets of eigenfunctions in attempting to identify a molecule among the ei-
gensolutions of the translationally invariant Hamiltonian.3 It is perhaps informative to
consider the possible extent of such degeneracy for a relatively simple hydrocarbon
with empirical formula C8H8. Consider just the 56 electrons for which it can be shown
[25] that the dimension of the permutationally allowed representation for the singlet
state is given by the Wigner formula f N

S with N = 56 and S = 0 and is:

53 × 47 × 44 × 43 × 41 × 37 × 35 × 34 × 31 	 2.6 × 1014

so that for this rather simple system one can expect the eigenfunctions, if any, in the
discrete spectrum of H′(t) to be very extensively degenerate even without considering
any degeneracies arising from the nuclear variables.

3 See the discussion of Theorem XIII.46 in [5].

123



998 J Math Chem (2008) 44:988–1008

3 Looking for molecules

In view of the discussion in the arguments advanced by Born and Oppenheimer [26], it
may be helpful to express H′(t) in terms of two sets of coordinates.4 One set consists
of A − 1 translationally invariant coordinates tn

i expressed entirely in terms of the
coordinates used originally to describe the nuclei, xn

i ,

tn
i =

A∑

j=1

xn
j V n

ji , i = 1, 2, . . . , A − 1 (18)

Here Vn is a non-singular matrix whose last column is special, with elements

V n
i A = M−1mi , M =

A∑

i=1

mi (19)

so that the coordinate X, defined by its last column, is the coordinate of the centre-of-
nuclear mass. The elements in the first A −1 columns of Vn each sum to zero, exactly
as in the general case, to ensure translational invariance. The other set comprises N
translationally invariant ‘electronic’ coordinates defined in terms of the initially chosen
electronic variables xe and whose origin is the centre-of-nuclear mass

te
i = xe

i − X (20)

The inverse relations are

xe
i = X + te

i (21)

xn
i = X +

A−1∑

j=1

tn
j ((V

n)−1) j i (22)

with

((Vn)−1)Ai = 1, i = 1, 2, . . . , A (23)

while the inverse requirement on the remaining rows gives

A∑

i=1

((Vn)−1) j i mi = 0, j = 1, 2, . . . , A − 1 (24)

4 The discussion below is aimed at the general polyatomic case. The cases A=1, A=2, A=3 (the nuclear
configurations that define, respectively, a point, a line and a plane) may be dealt with by special techniques
which are not considered here as it would deflect the main thrust of the argument.
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With this choice of coordinates the translationally invariant Coulomb Hamiltonian
takes the form,

H′(t) → He(te) + Hn(tn) + Hen(tn, te) (25)

The part of the Hamiltonian which can be associated with electronic motion can be
written as either

He(te) = − h̄2

2m

N∑

i=1

∇2(te
i ) − h̄2

2M

N∑

i, j=1

�∇(te
i ) · �∇(te

j ) + e2

8πε0

N∑

i, j=1

′ 1

|te
j − te

i |

or

He(te) = − h̄2

2µ

N∑

i=1

∇2(te
i ) − h̄2

2M

N∑

i, j=1

′ �∇(te
i ) · �∇(te

j ) + e2

8πε0

N∑

i, j=1

′ 1

|te
j − te

i |
(26)

with

1/µ = 1/m + 1/M (27)

while the part that can be associated with nuclear motion is

Hn(tn) = − h̄2

2

A−1∑

i, j=1

1

µn
i j

�∇(tn
i ) · �∇(tn

j ) + e2

8πε0

A∑

i, j=1

′ Zi Z j

ri j (tn)
(28)

where ri j (tn) is defined just as in the general case (11) but using the tn
i and (Vn)−1,

that is

ri j (tn) =
⎛

⎝
∑

α

(
A−1∑

k=1

((Vn−1
)k j − (Vn−1

)ki )t
n
αk

)2⎞

⎠
1/2

(29)

and the inverse mass matrix is similarly specialised as

1/µn
i j =

A∑

k=1

m−1
k V n

ki V n
k j , i, j = 1, 2, . . . , A − 1 (30)

The electronic and nuclear motion are coupled only via a potential term,

Hen(tn, te) = − e2

4πε0

A∑

i=1

N∑

j=1

Zi

r ′
i j (t

n, te)
(31)
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and the electron–nucleus distance expression becomes

|xn
i − xe

j | ≡ r ′
i j =

∣∣∣∣∣

A−1∑

k=1

tn
k (Vn)−1

ki − te
j

∣∣∣∣∣ (32)

For reasons that are explained fully in [27] this form of the Hamiltonian is only really
useful when the internuclear distances are relatively small but since it is molecules
that are being considered here, it is an appropriate form. It would not be very useful
when considering a scattering problem.

It might now be reasonably hoped that for some set of nuclei and electrons there
were discrete solutions of the form

H′(t)�n(t) = En�n(t) (33)

among which molecules might be identified. Here n is used to denote a set of quantum
numbers (J M p r n): J and M for the angular momentum state: p specifying the
parity of the state: r specifying the permutationally allowed irreps within the groups
of identical particles and n to specify a particular energy value. For a given J such
solutions will be degenerate for all 2J + 1 values of M , and the permutational irreps
can be, as has been seen, extensively degenerate too.

It might also be hoped that a first approximation to a solution of (33) could be
constructed in terms of product functions in which one portion of each product was
obtained from a problem in which the electronic motion was treated as primary, and
the other portion described the nuclear motion in the electronic field derived from
the first part of the product. This is the standard technique for treating a system of
coupled differential equations in which one group of equations represent fast motions
and another slow motions. Most chemists get their familiarity with this technique
by considering the kinetics of sequential chemical reactions. It is is technique that
underlies the Born and Oppenheimer programme in which the electronic motion is
approached in a frame fixed in the laboratory with an electronic Hamiltonian in which
the nuclear motion is at first ignored.

By analogy, the electronic Hamiltonian arising from (25) on ignoring the nuclear
motion is

Helec(tn, te) = He(te) + Ven(tn, te) + e2

8πε0

A∑

i, j=1

′ Zi Z j

ri j (tn)
(34)

It is the sum of (26) and (31) together with the last term from (28). So that the full
Hamiltonian can now be written as:

H′(t) = − h̄2

2

A−1∑

i, j=1

1

µn
i j

�∇(tn
i ) · �∇(tn

j ) + Helec(tn, te) (35)
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If the tn were assigned values, b say, based upon choices xn
g = ag in the

laboratory-fixed frame, then this would be the translationally invariant form of the
electronic Hamiltonian appropriate to a particular classical nuclear geometry and

Helec(tn, te) → Helec(b, te) (36)

This Hamiltonian is very like the usual clamped-nuclei one but it is explicitly transla-
tionally invariant and has an extra term, the second term in (26), which is often called
either the Hughes–Eckart or the mass polarisation term. The domain of Helec(b, te)

consists of functions on R3N because the nuclear repulsion operator becomes a num-
ber multiplier and just determines an energy zero and the electron–nucleus interaction
terms have fixed origins. The Hamiltonian can be shown to have discrete solutions
�elec

p (b, te) below the HVZ threshold by an extension of the argument used to show this
property for the clamped nucleus Hamiltonian. The only tricky point in this extension
arises from the fact that the Hughes–Eckart term need not be positive [8].

The Hamiltonian Helec(tn, te) has the same invariance under the rotation-reflection
group O(3) as does the full translationally invariant Hamiltonian (9) and it has a
somewhat extended invariance under nuclear permutations, since it contains the nuclear
masses only in symmetrical sums. Since it contains the translationally invariant nuclear
coordinates as multiplicative operators, its domain is of functions on R3N ⊗ R3(A−1).
It contains a bare Coulomb operator involving the nuclear variables alone with no
kinetic energy terms at all and the potential operator cannot, in this context, be regar-
ded as small; there must therefore be some question about its self-adjointness. The
operator seems to be unbounded and to have a completely continuous spectrum of a
very unpleasant kind given that eigenfunctions of the cartesian position operators are
Dirac δ functions.

It is often assumed that the electronic problem can be written as if the potential for
nuclear motion arose from:

Helec(tn, te)�elec
p (tn, te) = Eelec

p (tn)�elec
p (tn, te) (37)

but from the forgoing discussion the problems in such an identification are apparent,
even without considering nuclear permutations. It is clearly unwise to start off on such
dangerous ground if one hopes to try and move further.

Progress can be made by noting that electronic Hamiltonian (34) commutes with
each of the A − 1 nuclear position variables. Think now of the molecular bound state
space H as the square integrable sections in the trivial fiber bundle R3A−6 ⊗L2(R3N ).
In this case the the nuclear operator (which is the bare kinetic energy operator) acts in
the base space, that is upon functions defined on R3A−6 and the electronic Hamiltonian
acts only upon the fiber defined by the choice of b. (In this case the fiber is a vector
space and so the fiber bundle in this context is often called a vector bundle.) Now write
the full electronic Hamiltonian as a direct integral over the fibers.

Helec(∞, te) =
∫

⊕
Helec(b, te)db (38)
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where the tn have been replaced by b within the integral, to emphasise that it is over
fixed points that the “sum” is occuring and by ∞ on the left, to symbolise that this is
the form that the electronic Hamiltonian would have were the nuclear masses allowed
to increase without limit and the nuclear positions to cover all of R3A−3. This is, of
course to redefine the electronic Hamiltonian but in a perfectly reasonable way and
one which avoids the pitfalls of trying to deal directly with (34). It is a perfectly decent
operator but there are some aspects of it that need a bit more discussion.

It should be noted that �elec(b, te) as a solution to the Schrödinger Eq. 37 with tn

replaced by b, is defined only up to a phase factor of the form

exp[iw(b)]

where w is any single-valued real function of the bk and can be different for different
electronic states. Specific phase choices must therefore be made when tying this part
to the nuclear part of the product wave function. It is only by making suitable phase
choices that the electronic wave function is made a continuous function of the formal
nuclear variables, b, and the complete product function, made single valued. This is
the origin of the Berry phase in clamped nuclei calculations involving intersecting
potential energy surfaces; for a discussion of these matters see [28]. It is worth noting
explicitly that notions of molecular Berry phases and conical intersections of PE sur-
faces are tied to the clamped nuclei viewpoint. They are only ‘observable’ to the extent
that experimental data are interpreted within that framework. According to quantum
mechanics the eigensolutions of (33) are single-valued functions by construction with
arbitrary phases (rays) so one does not expect any Berry phase phenomena.

If it is decided to treat the system by specifying a set of three rotation angles and
3NT − 6 internal coordinates then problems arise with the vector bundle idea. This is
because such a separation requires that the the vector space R3NT −3 is decomposed
into the manifold S3 ⊗ R3NT −6. But this manifold cannot be coordinatised globally,
of course, so any account of electronic structure given in this way can at best be only
local.

It is possible to decompose the full space leaving the electrons described in a
vector space, if there are more than two nuclei, by splitting the whole space as R3N ⊗
S3 ⊗ R3A−6. Although with such a splitting the form of the electronic Hamiltonian
remains unchanged, because the matrix C in (17) will be a function only of the nuclear
coordinates, it couples the electronic motion to the angular motion and leaves the notion
of the electronic Hamiltonian as a direct integral, a local idea.

However the useful angular momentum operators can be constructed on R3NT −3

and so one can suppose that the angular momentum eigenfunctions are are constructed
by the standard coupling methods used in atomic theory and thus side-step the pro-
blems raised by the manifold division when constructing possible solutions. The direct
integral form of the electronic Hamiltonian will still be invariant under the operations
of O(3).

If a solution of the electronic problem is to be used in a solution of the full problem
then the solution must be one invariant under the permutation of identical nuclei. The
direct integral form is indifferent to whether or not individual nuclei are identified
and it is thus perfectly possible to regard formally identical nuclei as distinguishable
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particles simply by a suitable labelling of the points specified by b. However it is
equally possible that the direct integral properly reflect the permutational symmetry
by requiring that if b′ results from a permutation of identical nuclei specified by b
both sets be included in the same way in the direct integral.

4 The status of the Born–Oppenheimer approximation

The observations made above must make it clear that Born and Oppenheimer’s original
discussion cannot be mathematically sound, no matter how persuasive it may seem.
They started from an equivalent of (37) for a diatomic molecule and used ordinary
perturbation theory. They give no fully explicit account of the polyatomic molecule
problem at all. Combes et al. [29] using the fiber bundle approach and singular pertur-
bation theory about an assumed non-degenerate minimum in the potential V elec(tn),
with the fourth root of the ratio of the electronic to a typical nuclear mass as the pertur-
bation parameter, κ , showed in the 1970s that this approach for the diatomic molecule
led in a mathematically sound way to asymptotic solutions for the full problem, just
like those anticipated by Born and Oppenheimer. That is, they were able to show that
asymptotically the energy could be written as the sum of an electronic, a vibrational
and rotational part. The electronic part was the value of the potential at the minimum,
the vibrational part was given by the Harmonic oscillator eigenvalues with the force
constant determined by the second derivative of the electronic energy at the potential
minimum and the rotational energies were given by those of a rigid rotor whose ex-
tension was the value of the internuclear separation at the potential minimum. That
it is the Harmonic oscillator that provides the vibrational energies is, as the authors
note, “a miracle” because the range of the internuclear distance operator is only [0 ∞)

while that of the Harmonic oscillator variable is (−∞ +∞). But they show that this is
justified if the vibrational eigenfunctions vanish quickly enough away from the equi-
librium extension and that such vanishing is a consequence of a potential minimum
deep enough to validate the general argument.

It has not proved possible to consider the polynuclear molecule using singular
perturbation theory nor by separating out rotation-inversion symmetry. In 1992 howe-
ver, it was shown by Klein et al. [30], again treating the full problem in terms of a fiber
bundle, that if it is assumed that (36) has a discrete eigenvalue which has a minimum
as a function of the tn

g in the neighborhood of some values tn
g = bg , then because

of the rotation-inversion invariance such a minimum exists on a three dimensional
sub-manifold for all bg such that

bg → Rbg, R ∈ O(3)

The bg therefore define the geometrical shape of the minimum in the usual way. If the
minimum figure is a plane then the potential well is diffeomorphic to SO(3) while if it
is non-planar then it is diffeomorphic to O(3) and so the well is actually a symmetric
double well. In either case, Klein et al. show that the eigenvalues and eigenfunctions
for a polynuclear molecule can be obtained as WKB-type expansions to all orders5 of

5 The eigenfunctions expand in integer powers of κ; most of the eigenvalues expand in even powers of κ .
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the parameter κ . So it is properly established that the Born–Oppenheimer approach
leads to asymptotic solutions for the full problem but, interestingly, the potential is
usually a double-well one.

Just as permutational symmetry was not considered in the work of Born and his
collaborators, neither is it considered in the later work. With the choice of translatio-
nally invariant coordinates made above, it is a simple matter to incorporate electronic
permutational symmetry and, without any diminution of mathematical generality, to
require that the electronic part of the wave function include spin and be properly anti-
symmetric. On this understanding, it is perfectly reasonable to assume that the potential
at the minimum should not be degenerate. If it seems sufficient to treat the nuclei as di-
stinguishable particles then it can confidently be asserted that the Born–Oppenheimer
approach offers a perfectly satisfactory account of molecular wavefunctions whose
energy is close to a minimum in the potential.

At present there has been no direct consideration of the Born and Huang [31]
approach by mathematicians. To remove the translational motion from the problem and
so make possible the formal expansion at the heart of this method, while still allowing a
useful approach as the nuclei became widely separated, seems a vain hope. However,
in the time-dependent coherent states (wave-packet) approach to a freely moving
system, it is possible to use the laboratory-fixed coordinate system and hence to deal
with all the asymptotes, while avoiding problems arising from the pure translational
continuum. Among the first to use this approach on a molecule was Hagedorn [32]. For
diatomics he was able to show that, in the limit of large nuclear masses, the electrons
move adiabatically and determine an effective potential in which the nuclei, treated as
identifiable particles, move semi-classically if the potential surface is isolated. These
results do not depend upon there being a minimum in the potential. The results of
the Born and Oppenheimer work cited above would not be valid if there were not a
minimum around which the wavefunction could be expanded. Hagedorn’s work has
not been formally extended to polynuclear molecules (but see [33]) though it certainly
could be, by deploying the same sort of techniques that are used by Klein et al. [30] in
their work on polynuclear systems. However the approximation breaks down when the
potential surface fails to remain isolated from the rest of the electronic energy spectrum.
There is so far no mathematically satisfactory resolution of the general level crossing
problem but in a later paper [34] Hagedorn puts some aspects of the work that has
been done here in the context of more chemically-oriented level-crossing ideas. If it
becomes possible to deal with level crossing, then what is usually done in quantum
chemical calculations can be regarded as soundly based mathematically; however to
relate the product-like solutions obtained from such calculations to eigenfunctions of
the Hamiltonian for the moving nucleus problem, it still remains to deal with nuclear
permutational symmetry.

4.1 Permutational invariance of the effective electronic Hamiltonian

If the nuclei are treated as identifiable particles and a particular set of nuclear
coordinates is chosen, say xn

g = ag , then within the chosen set of translationally
invariant coordinates this will generate the set bg corresponding to the tn

g . A particular
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choice of nuclear coordinates will specify a geometrical figure F at whose vertices are
placed the nuclei. Any choice of nuclear coordinates that can be obtained from a given
choice by means of a rotation-reflection will generate the same geometrical figure. If
the nuclear coordinate choice a generates a geometry F, then any nuclear coordinate
choice that arises from a permutation of nuclei with the same charge, will give rise to
the same energy V elec. However two equivalent geometries so generated usually cor-
respond to a different coordinate choice. So, regarding V elec as specifying a particular
a point on a potential surface expressed in terms of the tn

g is rather too restrictive. It ac-
tually corresponds to as many points as are generated by permutations of particles with
identical charges. This observation was made at least as long ago as 1985 by Schmelzer
and Murrell [35] and developed in a series of papers by Collins and his group [36]. If
the chosen point is located at a minimum on the potential surface then it corresponds
to a multiple minimum with as many wells as there are permuted positions.

It is perhaps useful to provide an example of what is meant here. Suppose that one
was dealing with the molecule H2O2 and began by specifying four nuclear coordinates
in the full problem as xn

g, g = 1, 2, 3, 4 with 1 and 3 as labels for the protons, and 2
and 4 for the oxygens. The internal coordinates might be chosen as

tn
1 = xn

2 − xn
1, tn

2 = xn
2 − xn

4, tn
3 = xn

4 − xn
3

and thought of as one OH bond vector, an OO bond vector and another OH bond vector,
respectively. Now imagine a specific choice a made for the xn then such a choice would
specify a point in the coordinate space. The permutation (13) would transform the OH
bond vectors and produce new coordinates corresponding to crossed OH bonds vectors.
These crossed forms would require a linear combination of all three of the original
coordinates to express them. They would therefore, when the specific choice has been
made, locate a different position in the coordinate space than that originally specified,
but one at which the electronic energy had the same value.

Were there to be a minimum in the potential for some particular choice of the b
then in this example there would be four minima simply as a result of permutational
symmetry. If these minima occurred at a non-planar configuration there would be
eight because of inversion symmetry. Any point group symmetry would be subsumed
in the permutational symmetry. The nuclear motion problem tackled along the lines
of the Born–Oppenheimer programme would thus involve establishing that the usual
solutions were asymptotic solutions to a problem with a many-well potential. It would
also involve constructing permutationally allowed trial functions for nuclear motion.
No mathematical work that attempts to follow the Born and Oppenheimer or the Born
programme along this path appears to have been done.

The work mentioned above, [35] and [36], and later work [37] is devoted to
describing a potential surface in terms of coordinates that are invariant under per-
mutations of identical nuclei and is not directly a help in the matters considered here.
However the use made of classical invariant theory as described in Weyl [38] in these
discussions is very illuminating and may perhaps provide a way forward, as perhaps
does the work of Helffer and Sjöstrand [39] dealing with multiple well potentials. The
potentials considered in all of these works are invariant under the operations of the
rotation-reflection group in three dimensions, O(3). The discussion given is thus at a
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level somewhat different from that given above, where only translational invariance
has been considered explicitly. No matter which internal motion space is chosen, it
will still be necessary to deal with both fermion and boson particles. Methods for
dealing with spin 1/2 fermions are well enough known but the treatment of fermions
with higher spins and bosons generally is much less studied. The work of Paldus and
his colleagues [40] and that of Katriel [41] may perhaps provide a useful start here.

It should be pointed out that if one is considering potentials invariant under the
operations of the rotation-reflection group in three dimensions, O(3), then it is possi-
ble that a permutation of identical particles may result in a redefinition of the Eulerian
angles. Since the internal coordinates are defined in terms of scalar products of the
translationally invariant coordinates, it is clear that a permutation of the original coor-
dinates will transform any internal coordinate into, at most, a function of internal
coordinates. However, since the Eulerian angles are defined by orienting a coordinate
frame in the translationally invariant coordinate space, it is equally clear that, unless
the orientation is such that all indistinguishable particles are treated symmetrically, a
permutation will result in the Eulerian angles being transformed into functions of the
original Eulerian angles and the internal coordinates. Thus if the matrix C were chosen
according to the Eckart prescription [42], which is the one generally used by molecular
spectroscopists and does not usually involve all nuclei of equal mass symmetrically,
then permutations often mix the Eulerian and internal coordinates. Nuclear motions
in the Eckart prescription are defined in terms of displacements from a fixed nuclear
geometry and only permutations that correspond to point group operations for that
geometry, leave the Eulerian angles unchanged.

If it were possible to construct from a clamped nuclei start, a very good approximate
wave function for the whole system, having all the required symmetry properties and
including nuclear motion, then it might be possible to consider in a proper manner in
what sense it could be approximated by a wavefunction arising from the same clam-
ped nuclei start but leaving the nuclei identified and ignoring any nuclear permutation
symmetry. This could be by means of an approach similar to that which is used in
computing inter-molecular forces within the clamped nuclei approximation. Here, if
one considers two interacting molecules then the system of electrons formed by the
two combined must be represented by an antisymmetric wave function. The system
is a ‘super-molecule’. But as the two molecules are separated, then the representation
of the totally antisymmetric wavefunction by the product of two individually anti-
symmetric wavefunctions becomes perfectly adequate in energy terms. Thus some
consequences of the full symmetry requirements of the problem become unimportant
from an energetic point of view. Of course if one were looking for Einstein–Podolsky–
Rosen correlation effects, the full symmetry of the problem might well remain im-
portant in understanding the results of some experiment, even where it is unimportant
energetically.

The work by Longuet–Higgins [43] offered a justification of this sort of neglect
of nuclear permutational symmetry in terms of the idea of a feasible permutation.
If, within the chosen well on the potential energy surface, a permutation of identical
nuclei could be described by a point group operation on the nuclear framework then
such a permutation was feasible. If such a permutation could be described only by
an energetically demanding dismantling and re-assembling of the molecular model,
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then such a permutation would not be a feasible one. What permutations are feasible
depends upon the energy range being considered. Such non-point group operations as
rotation about a single bond are often considered feasible operations in this context and
there is nowadays a pretty complete theory of the symmetry feasible operations, usually
called the theory of the Nuclear Permutation Inversion Group. A critical account of
this theory and an exposition of others in the same vein, can be found in the monograph
by Ezra [44].

If the analysis given here of the problem is correct, however, these approaches
cannot be considered fully satisfactory. The arguments given above imply that in order
to construct the potential well in terms of which feasible operations can be defined,
it is necessary largely to ignore the permutational symmetry that feasible operations
are invoked to restore at least in part. There is also something of a logical difficulty in
such approaches. The permutations of the variables of identical particles are simply
mathematical operations in the quantum theory: they do not correspond to physical
operations. However, once the idea of feasibility is associated with a permutation then
some physical effect seems inevitably to be implied. So it is not clear if the idea of
a feasible permutation is equivalent to the more abstract mathematical idea in the
underlying theory.

It would seem that it is not at present possible to give a satisfactory account of how
the usual clamped nuclei approach leads to a solution of the moving nuclei problem.
It is thus appropriate to consider proceeding in the other direction to see if a moving
nuclei approach can lead to solution of the clamped nuclei problem.

Acknowledgements My thinking on the matters discussed here has been stimulated and refined over the
past 25 years by many discussions with Guy Woolley.
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